Cost-effective precise positioning for geospatial applications

Octavian Andrei
Department of Survey Engineering, Chulalongkorn University, Thailand

Total Value of GNSS Precise Positioning Technology

Seven billion GNSS devices by 2022 – almost one for every person on the planet.

Global GNSS market size

CAGR: 9%
CAGR: 5%

Who benefits of precision GNSS?

- Geodetic survey
- Earthquake & tsunami alert systems
- Machine Control
- GNSS meteorology
- Precision Agriculture
- Mobile Mapping
- ITS (Intelligent Transportation System)

Centimeter-level positioning

- Relative positioning using differential principles
- Carrier phase based techniques
- A pair of receivers
- Simultaneous tracking
- Baseline constraint

- RTK
 - Single-baseline
 - Limited area 10-20km
Disadvantages

- **High-operational costs for current positioning technology**
 - Expensive geodetic-grade receivers
 - Expensive post-processing software
 - Infrastructure is required
 - Limited applications due to cost issues

\[10000-30000\] €
How to reduce de cost?

• **Hardware**
 – Can we eliminate one receiver?
 – Can we use other type of receivers?

• **Software**
 – Can we use other positioning technique to obtain precise location information?
 – Can we reduce the cost of the processing software?

Q1: Can we eliminate one receiver?

[Diagram of RTK positioning system with descriptions of Reference Stations, Rover, Network RTK Server, and RTK Corrections.]
NetworkRTK: pro and cons

• **Benefits**
 – No need to set up a base station
 – Cost, labor, mobility, efficiency
 – Homogeneous and consistent accuracy over larger areas
 – The same area can be covered with fewer RS
 – Reliability, availability, continuity (365/24/7)

• **Drawbacks**
 – The cost to subscribe to an RTN and to receive corrections
 – Limited wireless data access
 – Interpolation (or extrapolation)

Different NRTK realizations

• **Area Correction Parameters (FKP)**
 – Flächen-Korrektur Parameter
 – Geo++ in the mid 1990s

• **Virtual Reference Station (VRS)**
 – Terrasat in the late 1990’s
 – Pseudo Reference Station (PRS)

• **Master Auxiliary Concept (MAC)**
 – proposed by Leica and Geo++ in 2001
 – individualized-MAX
Test methodology

<table>
<thead>
<tr>
<th>DoY</th>
<th>Session</th>
<th>morning</th>
<th>afternoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>VRS</td>
<td>VRS</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Nearest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Post-Processing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Two observation sessions
- Two NRTK modes
 - Nearest Station (single-base)
 - VRS
- Five time intervals
 - 10, 60, 180, 300, 480 sec
- 10 occupations at each interval
 - Average

Accuracy test

Horizontal Precision vs. Accuracy

Overview
- **RTK**
- **VRS**
- **Mean**
- **OPUS**

Graph Illustrations
- Center of precision: 2 cm Rx spec 95%
- Center of accuracy: ~1 cm

Legend
- OPUS PP Error
Q2: Can we use other type of receivers?

Cost-effective hardware

- **Original Equipment Manufacturer boards**
 - iTrax03 (2005)

- **GPS/GNSS modules**
 - Garmin 12XL (2000)
 - Garmin GPS25 (2010)

- **Navigation-grade receivers**
 - ublox (2009)
 - 100-500 €
 - LEA 6T, **UBX-RXM-RAW**: carrier phase with half cycle ambiguity resolved, code and Doppler obs.
Baseline processing

Low-cost baseline post-processing statistical indicators & error ellipses

<table>
<thead>
<tr>
<th>Baseline name</th>
<th>Length [m]</th>
<th>Duration [H:MM:SS]</th>
<th>Epochs</th>
<th>Precision [mm] North</th>
<th>Precision [mm] East</th>
<th>Precision [mm] Vert</th>
<th>Precision [mm] Horiz</th>
<th>Precision [mm] 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGI0-KAIV</td>
<td>22821,535</td>
<td>1:19:08</td>
<td>4748</td>
<td>8.4</td>
<td>7.1</td>
<td>17.8</td>
<td>11.0</td>
<td>20.9</td>
</tr>
<tr>
<td>FGI0-SMOK</td>
<td>16424,979</td>
<td>0:52:01</td>
<td>3121</td>
<td>4.6</td>
<td>4.0</td>
<td>11.8</td>
<td>6.1</td>
<td>13.2</td>
</tr>
<tr>
<td>SMOK-TIIL</td>
<td>11623,102</td>
<td>0:40:01</td>
<td>2401</td>
<td>5.4</td>
<td>2.0</td>
<td>12.3</td>
<td>5.7</td>
<td>13.5</td>
</tr>
<tr>
<td>FGI0-TIIL</td>
<td>4871,501</td>
<td>0:31:01</td>
<td>1861</td>
<td>1.9</td>
<td>1.3</td>
<td>4.4</td>
<td>2.3</td>
<td>5.0</td>
</tr>
<tr>
<td>OTA9-SMOK</td>
<td>481,253</td>
<td>0:25:01</td>
<td>1501</td>
<td>4.2</td>
<td>3.5</td>
<td>8.3</td>
<td>5.4</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Geodetic vs. low-cost baselines

Table 2. Comparison of the low-cost baseline vectors with respect to the geodetic baselines

<table>
<thead>
<tr>
<th>Baseline name</th>
<th>Baseline length [m]</th>
<th>Baseline error [cm]</th>
<th>Errors in the baseline components [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG10-KAIIV</td>
<td>22821,535</td>
<td>1.9</td>
<td>dX 0.7 dY 1.7 dZ -2.6</td>
</tr>
<tr>
<td>FG10-SMOK</td>
<td>16424,979</td>
<td>-4.6</td>
<td>dX 3.3 dY -3.3 dZ 0.1</td>
</tr>
<tr>
<td>SMOK-TIIL</td>
<td>11623,102</td>
<td>-2.2</td>
<td>dX -2.0 dY 2.0 dZ -4.8</td>
</tr>
<tr>
<td>FG10-TIIL</td>
<td>4871,501</td>
<td>2.1</td>
<td>dX -2.3 dY 1.2 dZ -1.2</td>
</tr>
<tr>
<td>OTA9-SMOK</td>
<td>481,253</td>
<td>1.5</td>
<td>dX 0.0 dY 0.1 dZ -3.6</td>
</tr>
</tbody>
</table>

Q3: Can we use other positioning technique to obtain precise location information?

- Dual-frequency data from a **single** GNSS receiver
- **Precise orbits** and SVs **clocks**
- Iono-free data combinations (P3, L3)
- Static positioning
 - ≈ 1.0 cm (horizontal) and ≈ 5.0 cm (vertical)
- Convergence period
- Post-processing

- OS: OPUS, magicGNSS, RTS-IGS, etc
- CS: CenterPoint RTX, Veripos APEX, Nexteq i-PPP

Source: Andrei (2010)

http://www.insidegnss.com/node/2977
Test A (Pulmankivene)
- Cart mapping

Test B (Tahtelä)
- Snow-mobile mapping

Test C (Ivalojoki)
- Boat navigation

FGI-ROAMER MMS

Statistics

<table>
<thead>
<tr>
<th></th>
<th>North (m)</th>
<th>East (m)</th>
<th>Up (m)</th>
<th>2D (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.035</td>
<td>-0.067</td>
<td>0.293</td>
<td>0.151</td>
</tr>
<tr>
<td>RMS</td>
<td>0.194</td>
<td>0.167</td>
<td>0.837</td>
<td>0.256</td>
</tr>
</tbody>
</table>

Multipath

Complete loss-of-lock
For ≈60% of the recorded epochs, 2D positioning errors are less than 10 cm.

Q4: Can we reduce the cost of processing software?

... other open source or freely available
Summary

<table>
<thead>
<tr>
<th>Nr.crt</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Can we eliminate one receiver?</td>
<td>NetworkRTK</td>
</tr>
<tr>
<td>2</td>
<td>Can we use other type of receivers?</td>
<td>Navigation-grade phase-enabled receiver</td>
</tr>
<tr>
<td>3</td>
<td>Can we use other positioning technique to obtain precise location info?</td>
<td>Precise Point Positioning</td>
</tr>
<tr>
<td>4</td>
<td>Can we reduce the cost of the processing software?</td>
<td>Open-source</td>
</tr>
</tbody>
</table>
Acknowledgement

- This participation is partially funded by the Institute of Positioning Navigation and Timing of Japan.

- This research is partially funded by the Ratchadaphisek Somphot Endowment Grant GDNS 57-041-21-002.

Thank you for Your attention!

http://www.sv.eng.chula.ac.th

Chulalongkorn University
Phayathai Road, Pathumwan,
Bangkok 10330,
Thailand